ЛО́ГІКА КЛА́САЎ,

раздзел логікі, у якім разглядаюцца класы (мноствы) прадметаў, што задаюцца характарыстычнымі ўласцівасцямі гэтых прадметаў (элементаў класаў). Л.к. выступае як прыватны выпадак логікі прэдыкатаў, што аперыруе з аб’ёмамі (класамі) паняццяў, змест якіх выражаецца адпаведнымі аднамеснымі прэдыкатамі. Л.к. адпавядае таксама сілагістыцы Арыстоцеля. Часам яна разглядаецца як фармалізаваная тэорыя мностваў, у іншых выпадках — як расшырэнне логікі выказванняў. Калі ў логіцы выказванняў абстрагуюцца ад сувязей паміж суб’ектам і прэдыкатам выказвання, то ў Л.к. гэтыя сувязі ўлічваюцца. У лік класаў у Л.к. уключаецца і пусты клас (0), які ўтрымлівае нулявое мноства элементаў, і ўніверсальны клас (1), які ўключае ўсе аб’екты. З класамі (мноствам) можна рабіць аперацыі: перасячэння (знаходжанне агульных для іх элементаў), аб’яднання (складання) і дапаўнення да ўзроўню універсальнага класа. Да алфавіта логікі выказванняў у Л.к. дадаюцца: пераменныя a, b, c, ... для класаў; знакі, якія абазначаюць аперацыі з класамі; пастаянныя тэрмы 0 і 1; знакі для абазначэння адносін паміж класамі. Уводзяцца адносіны ўключэння класа ў клас (a⊂b) — a уключаецца ў клас b; адносіны роўнасці двух класаў (a=b); абедзве гэтыя формы адносін могуць быць вызначаны праз адносіны прыналежнасці элемента класу (a∈b).

В.В.Краснова.

т. 9, с. 334

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)